Ito integral computation

Math 485

December 6, 2013

1 Goal:

To compute the explicit formula for some Ito integrals and verify the fact that Ito integral is a martingale with respect to the filtration generated by Brownian motion for "nice" integrands.

$2 \int_{0}^{t} B_{s} d B_{s}$:

Since intuitively, the "antiderivative" of B_{t} is B_{t}^{2}, we apply Ito's formula to B_{t}^{2} :

$$
d B_{t}^{2}=2 B_{t} d B_{t}+d t
$$

Hence

$$
B_{t}^{2}-B_{0}^{2}=2 \int_{0}^{t} B_{s} d B_{s}+\int_{0}^{t} d s
$$

which implies

$$
\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2}\left(B_{t}^{2}-t\right)
$$

This finishes the computation of $\int_{0}^{t} B_{s} d B_{s}$. To verify that it is a martingale we need to verify for $s \leq t$

$$
E\left(\int_{0}^{t} B_{r} d B_{r} \mid B_{s}\right)=\int_{0}^{s} B_{r} d B_{r},
$$

which is equivalent to verifying

$$
\begin{equation*}
E\left(B_{t}^{2}-t \mid B_{s}\right)=B_{s}^{2}-s . \tag{1}
\end{equation*}
$$

Thus we need to compute $E\left(B_{t}^{2} \mid B_{s}\right)$. We have

$$
\begin{aligned}
E\left(B_{t}^{2} \mid B_{s}\right) & =E\left(\left[B_{s}+\left(B_{t}-B_{s}\right)\right]^{2} \mid B_{s}\right) \\
& =E\left(B_{s}^{2}+2 B_{s}\left(B_{t}-B_{s}\right)+\left(B_{t}-B_{s}\right)^{2} \mid B_{s}\right) \\
& =B_{s}^{2}+(t-s),
\end{aligned}
$$

(By remembering that $B_{t}-B_{s}$ is independent of B_{s}).
It is easy to verify that (1) is true now.

$3 \int_{0}^{t} e^{B_{s}} d B_{s}$:

From the technique of section 2, it is easy to see that we can compute $\int_{0}^{t} B_{s}^{k} B_{s}$ and verify that it is a martingale for any integer k. In this section we'll compute a more challenging integral, namely $\int_{0}^{t} e^{B_{s}} d B_{s}$.

Again the idea is to apply Ito's formula to the "antiderivative" of $e^{B_{t}}$, which is $e^{B_{t}}$.

$$
d e^{B_{t}}=e^{B_{t}} d B_{t}+\frac{1}{2} e^{B_{t}} d t .
$$

Thus

$$
e^{B_{t}}-e^{B_{0}}=\int_{0}^{t} e^{B_{s}} d B_{s}+\frac{1}{2} \int_{0}^{t} e^{B_{s}} d s
$$

So

$$
\int_{0}^{t} e^{B_{s}} d B_{s}=e^{B_{t}}-1-\frac{1}{2} \int_{0}^{t} e^{B_{s}} d s
$$

This finishes the computation of the integral $\int_{0}^{t} e^{B_{s}} d B_{s}$. Notice then by computation, we mean rewrite the Ito integral into other expressions that do not invole the integral with respect to $d B_{t}$. To verify that $\int_{0}^{t} e^{B_{s}} d B_{s}$ is a martingale, we need to verify for $s \leq t$

$$
\begin{equation*}
E\left(\left.e^{B_{t}}-1-\frac{1}{2} \int_{0}^{t} e^{B_{r}} d r \right\rvert\, B_{s}\right)=e^{B_{s}}-1-\frac{1}{2} \int_{0}^{s} e^{B_{r}} d r \tag{2}
\end{equation*}
$$

So we need to compute two things: $E\left(e^{B_{t}} \mid B_{s}\right)$ and $E\left(\int_{0}^{t} e^{B_{r}} d r \mid B_{s}\right)$. The first computation is standard:

$$
\begin{aligned}
E\left(e^{B_{t}} \mid B_{s}\right) & =E\left(e^{B_{s}} e^{B_{t}-B_{s}} \mid B_{s}\right) \\
& =e^{B_{s}} e^{\frac{1}{2}(t-s)} .
\end{aligned}
$$

The second computation requires more attention:

$$
E\left(\int_{0}^{t} e^{B_{r}} d r \mid B_{s}\right)=\int_{0}^{t} E\left(e^{B_{r}} \mid B_{s}\right) d r
$$

Now for $r \leq s, E\left(e^{B_{r}} \mid B_{s}\right)=e^{B_{r}}$. But for $r \leq s, E\left(e^{B_{r}} \mid B_{s}\right)=e^{B_{s}} e^{\frac{1}{2}(r-s)}$ (by exactly the same computation just above). Thus

$$
\begin{aligned}
E\left(\int_{0}^{t} e^{B_{r}} d r \mid B_{s}\right) & =\int_{0}^{s} e^{B_{r}} d r+\int_{s}^{t} e^{B_{s}} e^{\frac{1}{2}(r-s)} d r \\
& =\int_{0}^{s} e^{B_{r}} d r+\left.e^{B_{s}} e^{-\frac{s}{2}}\left[2 e^{\frac{1}{2} r}\right]\right|_{s} ^{t} \\
& =\int_{0}^{s} e^{B_{r}} d r+2 e^{B_{s}}\left[e^{\frac{1}{2}(t-s)}-1\right]
\end{aligned}
$$

It is easy to verify the equality (2) now (See Homework 7 Problem 1 b).

